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LARGE DEVIATION ANALYSIS OF SUBEXPONENTIAL WAITING
TIMES IN A PROCESSOR-SHARING QUEUE

P. JELENKOVIĆ and P. MOMČILOVIĆ

We investigate the distribution of the waiting time V in a stable M/G/1 processor-sharing queue
with traffic intensity �< 1. When the distribution of a customer service request B belongs to a large
class of subexponential distributions with tails heavier than e−

√
x , it is shown that

� �V > x	= � �B > 
1−��x	
1+o
1�� as x→�

Furthermore, we demonstrate that the preceding relationship does not hold if the service distribution
has a lighter tail than e−

√
x .

1. Introduction. Processor-sharing algorithms have been widely used in modeling
computer and communication systems. These types of algorithms allow for efficient and
fair distribution of resources. Early work on processor sharing (Coffman et al. 1970) was
motivated by the study of multiuser mainframe computer systems. Renewed interest in the
processor-sharing queues stems from their application in modeling of computer commu-
nication networks and web servers. In particular, we would like to mention prospects of
modeling congested links with TCP traffic as a processor-sharing queue. More precisely,
consider a number of independent TCP sessions that are running for an extended period of
time. Then, by fairness of TCP (e.g., see Massoulié and Roberts 1999, Kelly et al. 1998),
it follows that on a long run each session receives an equal share of bandwidth, which is
exactly captured by processor-sharing discipline. Similarly, the majority of job schedulers
in web servers employ processor-sharing-based algorithms designed with the notion of fair-
ness in mind.
In this paper we study the M/G/1 processor-sharing (PS) queue that assumes Poisson

arrivals of subexponential job sizes. It is widely accepted that, in the case of a large num-
ber of independent users, the job (session) arrival times are well modeled by Poisson pro-
cesses. On the other hand, heavy-tailed distributions are suitable for modeling job sizes;
for discussion and references on traffic modeling with heavy-tailed/self-similar characteris-
tics, see Park and Willinger (2000). The study of this paper is motivated by recent findings
that server access patterns and file sizes may have moderately heavy tails, e.g., lognormal
(Squillante et al. 1999; Liu et al. 2000, 2001).
The literature on the M/G/1 PS queue is extensive; a comprehensive survey with more

than 200 references on mathematical problems of shared-processor systems can be found in
Yashkov (1992). Early investigations of processor-sharing systems used the Laplace trans-
form technique; e.g., see Coffman et al. (1970), Yashkov (1983), Schassberger (1984), Ott
(1984), and Morrison (1985). In the case of the M/M/1 PS system, the conditional Laplace
transform of the waiting time was derived in Coffman et al. (1970); further analysis of this
system was carried out in Morrison (1985). Representative studies of the M/G/1 PS queue
can be found in Yashkov (1983), Ott (1984), and Schassberger (1984). Recently, prediction
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methods for processor-sharing queues were developed in Ward and Whitt (2000). Waiting
times in the GI/G/1 PS queue were shown to be associated in Baccelli and Towsley (1990).
The heavy-traffic and fluid approximations were studied in Sengupta (1992), Grishechkin
(1994), Yashkov (1993), and Chen et al. (1997), respectively.
Empirical evidence of the presence of heavy tails in network traffic has stimulated the

analysis of subexponential queueing systems (Park and Willinger 2000). The importance
of scheduling in the presence of heavy tails was first recognized in Anantharam (1999).
Asymptotic behavior of the waiting time in the M/G/1 PS queue with polynomial-like tails
was derived in Zwart and Boxma (2000) and later generalized in Núñez-Queija (2000);
these results will be specifically discussed in the following section.
In contrast to most of the preceding analyses of both exponential (e.g., Coffman et al.

1970, Morrison 1985) and heavy-tailed (Zwart and Boxma 2000) systems that were based
on the Laplace transform technique, in this paper we develop a novel sample-path large
deviation approach. Using this approach, we first provide a direct sample-path proof of
the result from Zwart and Boxma (2000) and Núñez-Queija (2000). Then we extend this
result, in Theorem 3.1, to a large class of subexponential distributions with tails lighter than
polynomial and heavier than e−

√
x. Furthermore, in Proposition 3.1 we demonstrate that

the result does not hold for service distributions with tails lighter than e−
√
x. The uniform

large deviation bounds for sums of subexponential random variables stated in Theorem 3.2
represent our main technical results that are of independent interest.
Our main result is related to the recent study of sampling at subexponential times that was

investigated in Asmussen et al. (1999) and Foss and Korshunov (2000); this relationship will
be further discussed in Remark 3.4. It is interesting that, both in Asmussen et al. (1999),
Foss and Korshunov (2000), and this paper, the results require that the distributions have
heavier tails than e−

√
x. It is worth mentioning that the criticality of e−

√
x appeared in the

early work of A. V. Nagaev (1969).
The main result of the paper shows that the waiting time is asymptotically the same as

if the customer were served in isolation at an equivalent rate 1−�. A result of this type
is usually referred to as reduce load equivalence; e.g., see Theorem 4.4 in Jelenković and
Lazar (1999), Agrawal et al. (1999), Borst et al. (2003), and Kotopoulos et al. (2001). In
view of our main result and Asmussen et al. (1999) and Foss and Korshunov (2000), it is
tempting to infer that subexponential distributions with tails heavier than e−

√
x represent the

right framework for which these results may hold.
The paper is organized as follows. In the next section we formally describe the model

and discuss existing results on processor sharing with heavy tails. The main results are
stated in §3. Concluding remarks can be found in §4. The proofs of the technical findings
are postponed to §5.

2. M/G/1 processor-sharing queue. In this section we present the basic theory of the
M/G/1 processor-sharing queue. Customers arrive to the queue of unit capacity accord-
ing to a Poisson process with rate �. Service requirements of customers are independent
and identically distributed (i.i.d.) random variables (r.v.s) equal in distribution to B. Upon
its arrival a customer joins the queue and starts receiving service immediately. The cus-
tomers are served according to the processor-sharing scheduling discipline, namely, if there
are n customers present in the queue, then each of the customers receives service at rate
1/n. Once a customer receives service equal to its service requirement, it departs from
the system. The queue is assumed to be stable; i.e., the load � � �ƐB of the system
satisfies � < 1.
In analyzing renewal processes, excess random variables and distribution functions play

an important role. For a nonnegative random variable X with distribution F and finite
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mean ƐX, the excess distribution Fe is defined by

Fe
x�=
1
ƐX

∫ x

0

1−F 
u��du� x ≥ 0

A random variable X
e� with distribution Fe is called the excess variable of X.
The distribution of the number of customers L in the queue in the stationary regime is

known to be geometric (Kelly 1979, Sakata et al. 1969) and depends on B only through ƐB
(insensitivity property), i.e.,

� �L= n	= 
1−���n� n= 0�1�2� � � � 

Furthermore, the stationary remaining service requirements of the customers present in the
queue are i.i.d. random variables equal to B
e� in distribution (Wolff 1989, p. 387).

2.1. Existing results on processor sharing with heavy tails. In the case of regu-
larly varying distributions, Zwart and Boxma (2000) established the asymptotic relationship
between the tails of the waiting time in the M/G/1 PS queue and the customer service
requirement. The main result from Zwart and Boxma (2000) is derived by means of a Taube-
rian theorem that requires regularly varying service distribution with noninteger exponent.
By using sample-path arguments, Núñez-Queija (2000, see also Núñez-Queija 2002) gen-
eralized it to distributions with intermediately regularly varying tails. The result in Núñez-
Queija (2000) does not cover the technical case of ƐB2 =� and ƐB� <� for all � ∈ 
0�1�.
In §5 we provide a proof, using a completely different approach, that does not require this
minor condition.
Throughout the paper, for any two real functions f 
x� and g
x�, we use the standard

notation f 
x� ∼ g
x� as x→� to denote limx→� f 
x�/g
x� = 1 or, equivalently, f 
x� =
g
x�
1+o
1�� as x→�. The class of intermediately regularly varying distributions ��
is defined in the appendix.

Theorem 2.1 (Zwart and Boxma 2000, Núñez-Queija 2000). If ƐB� <� for some
� > 1 and B ∈ ��, then � �V > x	∼ � �B > 
1−��x	 as x→�.

Proof. Presented in §5.6. �

In the remaining part of the paper we extend the preceding theorem to a class of subex-
ponential distributions with lighter-than-polynomial tails, e.g., lognormal and Weibull.

3. Main results. This section contains the main results of this paper, stated in
Theorem 3.1 and Proposition 3.1. The proofs are based on an identity that will be described
in the following paragraph.
Let Bi and Vi be the job size and waiting time of the customer arriving at time Ti,

respectively. Recall that the sequence of arrival times �Ti�
�
i=1 is assumed to be Poisson.

Hence, without loss of generality, in view of the PASTA property (Wolff 1989), we set
T0 = 0. Waiting time of a customer is defined as an amount of time between its arrival
and departure, also referred to as sojourn time in the queueing literature. For the customer
arriving at time T0, define function R0
t� ≡ RB0
t� for t ≥ 0 as the amount of work that
remains to be completed at time t. The waiting time satisfies the following min-plus identity
which stems from the features of processor sharing

V0 = B0+
L∑
i=1
B

e�
i ∧B0+

N
V0�∑
i=1

Bi∧R0
Ti��(3.1)

where L is the number of customers in the system just before time t = 0, N
t� denotes
the number of Poisson arrivals in 
0� t�, and x∧y ≡min
x� y�; the number of customers in
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the system L and their residual work B
e�i are independent; e.g., see Wolff (1989, p. 387).
The identity follows from the fact that in the PS queue any two customers present in the
system for some interval of time receive equal amounts of service during that interval,
irrespective of other departures and arrivals. In particular, a customer i, 1≤ i≤L, present in
the system just before t = 0, receives B0∧B
e�i amount of service during 
0� V0�. Similarly,
any customer arriving at Ti ∈ 
0� V0� obtains Bi∧R0
Ti� service in interval 
0� V0�. Clearly,
the 0th customer receives its full requirement B0 by time V0. Therefore, by summing up the
services that each customer present in the queue during 
0� V0� receives, one derives (3.1).
A related expression to (3.1) can be found in Yashkov (1983, Equation (3.4); see also
Theorem 5.3.2 in Núñez-Queija 2000).
In this paper we focus on a class of distributions that belongs to a large set of subex-

ponential distributions � $ as defined in the Appendix. This class of distribution functions
(d.f.) was first introduced by A. V. Nagaev (1977).
Definition 3.1. A nonnegative random variable X (or its d.f.) belongs to class ��

(subexponential concave) if its hazard function Q
x� � − log� �X > x	 is eventually con-
cave, such that, as x→�,

Q
x�/ logx→��(3.2)

and for x ≥ x0, &x ≤ u≤ x,

Q
x�−Q
u�
Q
x�

≤ �
x−u
x

�(3.3)

where x0, 0< �< 1, and 0< &< 1 are fixed constants.
Examples of random variables in �� include those with hazard functions of type

(i) c
logx�( , ( > 1 and (ii) c
logx�(x�, ( > 0, 0< �< 1; i.e., widely used lognormal and
Weibull distributions belong to ��. Condition (3.2) implies that if X ∈ ��, then X has
all moments; this, in view of Theorem 2.1 that covers the hazard functions of type c logx,
is not restrictive.
The next theorem is the main result of the paper.

Theorem 3.1. Let B ∈�� with � < 1
2 and

lim
x→�

� �B
e� > x	

x� �B > x	
<�(3.4)

Then, as x→�,
� �V > x	∼ � �B > 
1−��x	

Remark 3.1. (i) The condition (3.4) is not very limiting because it is implied if
x1+)� �B > x	 is eventually monotonically decreasing in x for some ) > 0.
(ii) In the case when Q
x� is absolutely continuous with hazard rate q
x�� dQ
x�/dx,

the eventual concavity of Q
x� is implied by q
x� being eventually decreasing and Condi-
tion (3.3) is equivalent to

xq
x�

Q
x�
≤ �� ∀x ≥ x0

These types of assumptions were used in Baltrunas (1995).
The condition �< 1

2 in Theorem 3.1 is crucial. As the proposition below shows, the result
does not extend to the whole class of subexponential distributions. An intuitive explanation
of this criticality arises from fluctuations induced by the CLT. Informally, the last sum in
(3.1) is approximately equal to �V0+O


√
V0� for large V0. Therefore, for the result to hold,

the distribution of V0, or equivalently B0, has to be immune to these fluctuations, which
translates to � < 1

2 .
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Proposition 3.1. If � �B > x	 = e−x� , � > 1
2 , then � �B > x	 = o
� �V 
1−�� > x	� as

x→�.

Remark 3.2. The proposition implies the result earlier obtained in Asmussen et al.
(1999), that the busy period P in the M/G/1 queue satisfies � �B > x	= o
� �P
1−�� > x	�
as x→�, when � �B > x	= e−x� , � > 1

2 .
The next lemma summarizes the basic properties of r.v.s in ��. The proof is given in §5.

Lemma 3.1. Let X ∈�� and Q be its hazard function, then
(i) Q
x�≤Q
u�
x/u�� for all x0 ≤ u≤ x.
(ii) For any 0< ) < 1−�, � �X > x−x)	∼ � �X > x	 as x→�.
(iii) X ∈� $.
(iv) For any 0< - < 1 there is ) > 0 such that for some . > 0 and sufficiently large x,

Q

-−)�x�+Q

1−-�x�≥ 
1+ .�Q
x�

In this paper C denotes a sufficiently large positive constant, while c denotes a sufficiently
small positive constant. The values of C and c are generally different in different places;
for example, C/2= C, C2 = C, C+1= C, etc.
The upper bound for Theorem 3.1 is derived by means of two bounds stated below.

These large deviation bounds are our main technical results that are of independent interest.
Related large deviation bounds can be found in Nagaev (1979).

Theorem 3.2. Let 1− e−Q
x� ∈�� and � �X > x	≤ Cxe−Q
x�. Then
(i) For all x and u,

�

[
N
u�∑
i=1

Xi−ƐX ƐN
u� > x

]
≤ C

(
e−cx

2/u+ue−
1/2�Q
x�)
(ii) For any positive integer k there exists 1> ( > 0 such that for all 1≤ n≤ Cx,

�

[
n∑
i=1
Xi∧(x−nƐX > x

]
≤ Ce−kQ
x�

Remark 3.3. (i) A minor modification of the proof shows that the first part of the
theorem holds when Poisson N
u� is replaced by u.

(ii) When � �X > x	 ≤ Ce−Q
x�, the conditions on the hazard function Q
x� can be
relaxed. In particular, Condition (3.2) can be replaced with

lim
x→�

Q
x�

logx
> 2�

which implies the existence of 
2+ .� moment for some . > 0.
(iii) In view of this theorem, the condition B ∈�� in Theorem 3.1 can be relaxed by B

being asymptotically equivalent to a distribution in ��.
Proof. See §5. �

For any sequence of i.i.d. r.v.s �Xi� we use W
2
X∧Y to denote the stationary workload

in a queue with Poisson arrivals of rate �, capacity 2, and job sizes equal to �Xi ∧ Y �;
let W2

X ≡ W
2
X∧�. The following lemma estimates the stationary workload in a queue with

truncated service requirements.

Lemma 3.2. Assume 2> �.
(i) If ƐB1+) <� for some ) > 0, then for any � there exists . > 0 such that, as x→�,

�
[
W

2
B∧.x > x

]= o
x−��
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(ii) If B ∈�� and

lim
x→�

� �B
e� > x	

x� �B > x	
<��

then for any integer k ≥ 1 there exists 1> . > 0 such that, as x→�,

� �W2
B∧.x > x	= o

(

� �B > x	�k

)


Proof. Given in §5. �

The next bound was derived in Borst et al. (2003). For completeness, the proof is pre-
sented in §5.

Lemma 3.3. If B ∈� $, then for any positive ) < 1−� and all x, the excess distribution
of the residual busy period is bounded by

� �P 
e� > x	≤ C� �B
e� > 
1−�−)�x	
The last preparatory result states that asymptotically the long waiting time of a customer

cannot be caused by the customers present in the queue upon its arrival. Classes of heavy-
tailed distributions �, �, and � $ are defined in the Appendix.

Proposition 3.2. Let either (i) X ∈�∩� and ƐX <� or (ii) X ∈� $ and

lim
x→�

� �X
e� > x	

x� �X > x	
<�

If �X
e�
i �

�
i=1 are i.i.d. random variables equal in distribution to X
e� and independent of N

with Ɛ�
1+ .�N 	 <� for some . > 0, then as x→�,

�

[
X+

N∑
i=1
X

e�
i ∧X > x

]
∼ � �X > x	

Proof. See §5. �

Proof of Theorem 3.1. Expression (3.1) for the waiting time of the 0th customer
renders

V0−
N
V0�∑
i=1

Bi∧R0
Ti�= B0+
L∑
i=1
B0∧B
e�i � �B0�(3.5)

where �B0 is introduced for notational convenience. Next, for - > max� 12 �&� and ) > 0,
write � �V0
1−�� > x	= f1
x�+ f2
x�+ f3
x� where

f1
x� = � �V0
1−�� > x� �B0 ≤ -x	�

f2
x� = �
[
V0
1−�� > x� -x < �B0 ≤ x−x1/2+)]�

f3
x� = �
[
V0
1−�� > x� �B0 > x−x1/2+)

]


In what follows, we examine the asymptotic behavior of the three terms. We start with
f1
x�. Observe that, since �B0 ≥ B0 ≥ R0
t�, (3.5) implies

V0
1−�−)�≤ �B0+ sup
t≥0

{
N
t�∑
i=1
Bi∧ �B0− 
�+)�t

}

d= �B0+W�+)
B∧ �B0�
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where
d= denotes the equality in distribution. Therefore, for )� � )/
1−��,
f1
x�≤ �

[ �B0+W�+)
B∧ �B0 > 
1−)��x� �B0 ≤ -x

]
≤ �

[
W

�+)
B∧)�x > 
1−2)��x

]+ ∫ -x

)�x
�
[
W

�+)
B > 
1−)��x−u

]
d� � �B0 ≤ u	

If )� (i.e., )) is chosen small enough, the first term in the preceding sum, by Lemma 3.2(ii),
is upper bounded by C
� �B > 
1−2)��x	�

2 = o
� �B > x	�, where the last equality follows
from Lemma 3.1(i). The bound for the second integral term is as follows. By Pakes’ asymp-
totic result for the workload of a stable M/G/1 queue (Pakes 1975) and Assumption (3.4),

f1
x�≤ Cx
∫ -x

)�x
e−Q

1−)��x−u� d� � �B0 ≤ u	+o
� �B > x	�

Next, by discretizing the last integral for some 4 > 0, one obtains

f1
x�≤ Cx

�
-−)��/4�∑
j=0

∫ 
)�+
j+1�4�x


)�+j4�x
e−Q

1−)��x−u� d� � �B0 ≤ u	+o
� �B > x	�

≤ Cx

�
-−)��/4�∑
j=0

e−Q

1−2)�−
j+1�4�x� � � �B0 > 
)�+ j4�x	+o
� �B > x	�

≤ Cx

�
-−)��/4�∑
j=0

e−Q

1−2)�−
j+1�4�x�−Q

)�+j4�x�+o
� �B > x	��

where the last inequality is due to Proposition 3.2. Next, Lemma 3.1(iv) shows that each
term in the last sum is o
� �B > x	� for sufficiently small )� (i.e., )) and 4 and, thus,

f1
x�= o
� �B > x	�

Bounding f2
x� requires the most work. Introduce a continuous function H7 	+ → 	+
defined as

H
t�� sup
0≤u≤t

{
u−

N
u�∑
i=1

Bi

}
� t > 0(3.6)

The function H is nondecreasing and, hence, it is possible to define a right-continuous
inverse H←
x�= inf�t > 07 H
t� > x�. From Figure 1, due to the memoryless property of
exponential distribution, it is clear that H
t� increases linearly at rate 1 over exponential
intervals of parameter � and then stays constant for the amounts of time that are equal in
distribution to the busy period P of the original M/G/1 queue. Thus, H← can be written in
the following form:

H←
t�= t+
N
t�∑
i=1
Pi�(3.7)

where r.v.s �Pi�
�
i=1 are i.i.d. copies of P . Note that H

←
t� is the busy period of an M/G/1
queue with initial workload equal to t.
From (3.5), V0 can be interpreted as the first time t, that t−∑N
t�

i=1 B0 ∧R0
t� = �B0,
implying

V0 ≤ inf

{
t > 07 t−

N
t�∑
i=1
Bi > �B0

}
(3.8)

= inf�t > 07 H
t� > �B0�=H←
 �B0�
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0

H(t)

T1 T2 T3 T4 T5 T6 t

Figure 1. A typical sample path realization of function H ; Tn’s are the Poisson arrival points.

By using (3.7) and (3.8), f2
x� can be upper bounded by

f2
x�≤
∫ x−x1/2+)

-x
�

[
N
u�∑
i=1

Pi−�uƐP >
x−u
1−�

]
d� � �B0 ≤ u	

≤ C
∫ x−x1/2+)

-x

(
e−c
x−u�

2/u+ue−
1/2�Q

1−)�
x−u��)d� � �B0 ≤ u	

� f21
x�+ f22
x��

where the second inequality follows from Lemma 3.3, Condition (3.4), and Theorem 3.2.
Integration by parts and Proposition 3.2 give a bound for f21
x�:

f21
x�≤ Ce−cx−Q
-x�+C
∫ x−x1/2+)

-x

x2−u2
u2

e−Q
u�e−c
x−u�
2/u du

≤ Ce−cx+Ce−Q
x�
∫ x−x1/2+)

-x
eQ
x�−Q
u�−c
x−u�

2/x du�

where in the second inequality we used that 
x2−u2�/u2 =O
1� for all u in the interval of
integration. To show that f21
x�= o
� �B > x	�, it is enough to verify that the exponent in
the last integral is upper bounded by −cx2) for the given interval of u. Thus, by Assump-
tion (3.3) and Lemma 3.1(i), for all large x,

Q
x�−Q
u�− c 
x−u�
2

x
≤ �Q
x�

x−u
x

− c 
x−u�
2

x
(3.9)

≤ Cx�
x−u
x

− c 
x−u�
2

x

≤ Cx−
1/2−��+)− cx2)8

since for all x large enough, the right-hand side of the second inequality is increasing in
u and u ≤ x− x1/2+). Now, by choosing ) < 1

2 −� it follows that (3.9) is upper bounded
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by −cx2). As far as f22
x� is concerned, by discretization of the integral below, we have

f22
x�≤ Cx
∫ x−x1/2+)

-x
e−
1/2�Q

1−)�
x−u�� d� � �B0 ≤ u	(3.10)

≤ Cx
�
1−-�x1/2−)�∑

j=1
e−
1/2�Q

1−)�jx

1/2+)�e−Q
x−
j+1�x
1/2+)�

≤ Cmax
{
x3/2e−
1/2�Q

1−)�x

1/2+)�−Q
x−2x1/2+)��

x3/2e−
1/2�Q

1−-�
1−)�x�−Q
-x−2x
1/2+)�}�

where in the last inequality we used the concavity property of Q, i.e., the maximum of all
the summands is equal to either the first or the last summand. Thus, Lemmas 3.1(i) and
3.1(ii) imply that the first term in the preceding maximum is o
� �B > x	�; the exponent of
the second term is by Lemma 3.1(i) bounded by

1
2
Q

1−)�
1−-�x�+Q

-−)�x�−Q
x�≥Q
x�

(

1−)��

2

1−-��−�
1−-+)�

)


Therefore, for all ) sufficiently small, we obtain

f2
x�= o
� �B > x	�

The bound for f3
x� is straightforward by Lemma 3.1 and Proposition 3.2:

lim
x→�

f3
x�

� �B > x	
≤ lim

x→�
� �B > x−x1/2+)	

� �B > x	
= 1

Combination of bounds for f1, f2, and f3 yields the upper bound. The lower bound is a
corollary of Lemma 3.4. �

Denote by V 
x� the waiting time of a customer, conditional on the fact that its service
requirement is equal to x. In the same fashion, let R
x�
t� be the conditional amount of
service to be completed at time t.
Remark 3.4. Waiting time V0 can be represented as sampling at subexponential time

B0 of the monotonically increasing process

V 
x� = x+
L∑
i=1
B

e�
i ∧x+

N
V 
x��∑
i=1

Bi∧R
x�
Ti��

for which one could potentially use results obtained in Asmussen et al. (1999) and Foss
and Korshunov (2000). However, the major difficulty in carrying out this approach is that
V 
x� is implicitly defined; i.e., understanding V 
x� requires the knowledge of V 
x� and R
x�.
This is similar to the situation that arises in the analysis of the busy period, as pointed out
in Asmussen et al. (1999).
The following lemma provides a general lower bound on the waiting time. The proof

is based on the Central Limit Theorem, and, therefore, the second moment of the service
requirement is assumed.

Lemma 3.4. If ƐB2 <� and � �B > x	∼ � �B > x+x1/2+)	 as x→� for some ) > 0,
then

lim
x→�

� �V > x	

� �B > 
1−��x	 ≥ 1
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Proof. Consider the stationary M/G/1 PS queue at t < 0, as described in §2. Next,
assume that at time t = 0 a special customer with infinite service requirement arrives. Let
Z
t�, t ≥ 0, be the total unfinished work in the new PS systems of all but the infinite
customer. It is known that Z
t� converges in distribution to an a.s. finite random variable Z
(Wolff 1989, p. 339). In what follows, we exploit the fact that at time t = V0 the remaining
unfinished work in the original PS queue is equal to Z
V0�. Thus, (3.1) and (3.6) render

H
V0� ≥ V0−
N
V0�∑
i=1

Bi(3.11)

≥ B0−
(
N
V0�∑
i=1

Bi−
N
V0�∑
i=1

Bi∧R0
Ti�

)

≥ B0−
(
N
V0�∑
i=1

Bi−
N
V0�∑
i=1

Bi∧R0
Ti�+
L∑
i=1

B


e�
i −B
e�i ∧B0�

)
= B0−Z
V0�

Next, from (3.11) and the monotonicity of H← one obtains

� �
1−��V0 > x	≥ �
[

1−��H←
B0−Z
V0�� > x� B0 > x+k

√
x�Z
V0�≤

√
x
]

≥ �
[

1−��H←
x+ 
k−1�

√
x� > x� B0 > x+k

√
x�Z
V0�≤

√
x
]
�

where k > 1. Then, by independence of H←
x� and Z
x� from B0,

� �
1−��V0 > x	 ≥
∫ �

x+k√x
�
[

1−��H←
x+ 
k−1�

√
x� > x� Z
V 
y��≤√

x
]
d� �B ≤ y	

≥
(
�
[

1−��H←
x+ 
k−1�

√
x� > x

]− sup
y≥x+k√x

�
[
Z
V 
y�� >

√
x
])

·� �B > x+k√x	8
the second inequality follows from the union bound. Observe that since Z
t� converges in
distribution to a.s. finite Z, the supremum in the preceding inequality tends to 0 as x→�.
Therefore,

lim
x→�

� �
1−��V0 > x	
� �B > x	

≥ lim
x→�

� �
1−��H←
x+ 
k−1�
√
x� > x	

Next, it is known that ƐP 2 < � if and only if ƐB2 < � (Abate and Whitt 1997). Thus,
by (3.7), the process H←
t� as a function of t satisfies the Central Limit Theorem, yielding

lim
x→�

� �
1−��V0 > x	
� �B > x	

≥ lim
k→�

lim
x→�

� �
1−��H←
x+ 
k−1�
√
x� > x	= 1�

which concludes the proof. �

Proof of Proposition 3.1. The proof is a minor modification of the proof of
Lemma 3.4. Equation (3.11) leads to

� �
1−��V0 > x	 ≥ � �
1−��H←
B0−Z
V0�� > x� B0 > x−
√
x� Z
V0�≤

√
x	

≥ � �
1−��H←
x−2
√
x� > x� B0 > x−

√
x� Z
V0�≤

√
x	

≥
(
�
[

1−��H←
x−2

√
x� > x

]− sup
y≥x−√

x

� �Z
V 
y�� >
√
x	

)

·� �B > x−√
x	
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Thus,

lim
x→�

� �
1−��V > x	
� �B > x	

≥ lim
x→�

�
[

1−��H←
x−2

√
x� > x

]
lim
x→�

� �B > x−√
x	

� �B > x	

≥ c lim
x→� e

x�−
x−√
x�� =��

since � > 1
2 ; the existence of c > 0 follows from the Central Limit Theorem. �

4. Concluding remarks. In this paper we study a processor-sharing queue that repre-
sents a baseline model of efficient and fair network resource-sharing algorithms, e.g., TCP
flow control protocol and Web server job-scheduling algorithms. Our main result extends
the asymptotic reduced load equivalence relationship between the job sizes and their wait-
ing times, derived in Zwart and Boxma (2000) and Núñez-Queija (2000) for polynomial
tails, to a large class of subexponential distributions with tails heavier than e−

√
x. In particu-

lar, this extension covers the practically important case of jobs with lognormal distributions
that were recently empirically measured in Liu et al. (2000, 2001).
From a mathematical perspective, in contrast to the earlier work on this problem that

utilized the Laplace transform technique, we derive a sample-path method that could poten-
tially be useful in analyzing more general models for which the Laplace transform solutions
may not be available. Furthermore, we show that the derived relationship does not hold if
the job sizes have lighter tails than e−

√
x. The criticality of e−

√
x appeared earlier in Nagaev

(1969) as well as Asmussen et al. (1999) and Foss and Korshunov (2000). In view of our
analysis and Asmussen et al. (1999) and Foss and Korshunov (2000), one is tempted to
conjecture that a class of subexponential distributions with tails heavier than e−

√
x repre-

sents a natural framework for fully extending other reduced load equivalence results, e.g.,
Theorem 4.4 in Jelenković and Lazar (1999) and the results of Agrawal et al. (1999).

5. Proofs. This section contains the proofs of technical results: Lemmas 3.1, 3.2, 3.3,
Proposition 3.2, and Theorems 3.2 and 2.1. The large deviation bounds of Theorem 3.2 are
our main technical results that are of independent interest.

5.1. Proof of Lemma 3.1. (i) For any x0 ≤ u ≤ x, we can choose & < ( < 1 and n
such that (n+1x ≤ u≤ (nx. Then (3.3) implies

Q
x�
1−�+�(�n+1 ≤Q
(n+1x�≤Q
u�

and, therefore,
Q
x�
1−�+�(�1+log
x/u�/ log
1/(� ≤Q
u�

The last inequality can be restated in the following equivalent form:

Q
x�≤Q
u�
1−�
1−(��−1
(x
u

)log
1−�
1−(��−1/log(−1


The statement (i) follows from the preceding inequality and the following limit:

lim
(↗1

log
1−�
1−(��−1
log(−1 = �

(ii) Set u= x−x) in (3.3) to obtain

Q
x−x)�≥Q
x�
1−�x)−1�
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Part (i) implies Q
x�≤ Cx� for x ≥ x0. Then for x ≥ x0,

e−Q
x−x
)�+Q
x� ≤ e�x

)−1Q
x� ≤ eC�x
�+)−1

and the claim (ii) follows.
(iii) For any ) > 0 and sufficiently large x, the symmetry and concavity of Q
x� yields

∫ x

0
� �X > u	� �X > x−u	du≤ 2

∫ x)

0
� �X > u	� �X > x−u	du+

∫ x−x)

x)
e−Q
u�e−Q
x−u� du

≤ 2ƐX e−Q
x−x
)�+xe−Q
x−x)�e−Q
x)�

Next, set ) < 1−� and use (i) and (3.2) to obtain the upper bound. The lower bound
follows from

∫ x

0
� �X > u	� �X > x−u	du≥ 2

∫ x)

0
� �X > u	� �X > x−u	du

≥ 2� �X > x	
∫ x)

0
� �X > u	du

(iv) Directly from (i),
Q

-−)�x�≥Q
x�
-−)���
Q

1−-�x�≥Q
x�
1−-��

Then, summing the last two inequalities results in

Q

-−)�x�+Q

1−-�x�≥Q
x�
(

-−)��+ 
1−-��)

and the statement follows. �

5.2. Proof of Lemma 3.2. The proof is based on the analysis of sums of truncated
random variables. Denote by K the number of positive ladder heights in the Pollaczek-
Khintchine representation of the stationary workload in an M/G/1 queue (see Chapters VII
and IX in Asmussen 1987).

(i) First observe that for all y ≤ .x,

�
[

Bi∧ .x�
e� > y

]≤ ƐB

Ɛ
B∧ .x� � �B

e� > y	�(5.1)

and introduce a new absolutely continuous random variable S defined by

� �S > y	=
{(

1+)�� �B
e� > y	)∧1 y < y0�


1+)�y&0 � �B
e� > y0	y−& y ≥ y0�

where y0 is finite. Then, for sufficiently large x and all y, � �S∧.x > y	≥ � �
B∧.x�
e� > y	
and, thus,

�
[
W

2
B∧.x > x

]= �

[
K∑
i=1

Bi∧ .x�
e� > x

]
(5.2)

≤ �

[�k log .x�∑
i=1

Si∧ .x > x
]
+� �K > k log .x	�
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where random variables �Si� are i.i.d. equal in distribution to S. Setting s = �.−1� and using
an easy modification of the proof of Theorem 1 of Jelenković (1999) we derive

�

[�k log .x�∑
i=1

Si∧ .x > x
]
≤
(�k log .x�

s+1

)
Cx−
s+1�&

≤ C
logx�s+1x−
s+1�&

By an appropriate choice of s (and hence of .), one can ensure that �< 
s+1�& and, thus,

�

[�k log .x�∑
i=1

Si∧ .x > x
]
= o
x−��(5.3)

Furthermore, K is geometric and, therefore, a large-enough k ensures � �K > k log .x	 =
o
x−��. Finally, this bound on K, (5.3) and (5.2) imply the proof of part (i).
(ii) The proof is similar to the proof of part (i). The Pollaczek-Khintchine representation

results in

� �W2
B∧.x > x	= �

[
K∑
i=1

Bi∧ .x�
e� > x

]

≤ �

[�cx�∑
i=1

Bi∧ .x�
e� > x

]
+� �K > cx	

We point out that by (5.1) and the assumption of the lemma, � �
B∧.x�
e� > y	≤Cye−Q
y�.
Next, introduce a new random variable defined by � �S > y	 = Cye−Q
y�∧ 1 and note that
for all y ≥ 0,

� �
B∧ .x�
e� > y	≤ � �S∧ .x > y	
Thus, for any 1/k > 4 > 0, we can choose c < 4/ƐS, rendering for sufficiently small .,

�

[�cx�∑
i=1

Bi∧ .x�
e� > x

]
≤ �

[�cx�∑
i=1
Si∧ .x−�cx�ƐS > 
1−4�x

]

≤ Ce−
k+1�Q

1−4�x��

where the last bound follows by Theorem 3.2. Assumption (3.3), for 4 < 1−&, yields
kQ
x�≤ 
k+1�Q

1−4�x� and, hence, part (ii) holds. �

5.3. Proof of Lemma 3.3. We start with constructing a new hybrid queue of unit
capacity. It is fed by two arrival processes: (i) the arrival process of the original M/G/1
queue, and (ii) a fluid process of a constant rate 1−�−). The second process is served
only if the workload of the first one is zero, i.e., the first process has the absolute priority.
Let A be the stationary amount of work in the system that belongs to the second arrival
process. Since the workload of the second process is not greater than the total workload in
the system,

� �A > x	≤ � �W �+)
B > x	∼ �)−1� �B
e� > x	 as x→��(5.4)

where the asymptotics for the M/G/1 queue follows from Pakes’ theorem (e.g., see
Jelenković and Lazar 1999). Now, note that the workload of the second process evolves in
the same way as the workload in a fluid queue loaded with an On-Off process. The On
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periods correspond to the busy periods in the original queue. Therefore, the probability that
the process is in the active state is � and

� �A > x	≥ ��

[
P
e� >

x

1−�−)
]


The last inequality and (5.4) yield the statement of the lemma. �

5.4. Proof of Proposition 3.2. The proof is an immediate consequence of the following
four Lemmas 5.1–5.4 and the dominant convergence.

Lemma 5.1. Let �Yi�
n
i=1 be independent, a.s. finite random variables and X ∈ �∩�.

Then, for any fixed n, as x→�,

�

[
X+

n∑
i=1
X∧Yi > x

]
∼ � �X > x	

Proof. Note that �X+∑n
i=1X∧Yi > x� only if �X > x/
n+1��. Hence, for any k > 0

the union bound yields

�

[
X+

n∑
i=1
X∧Yi > x

]
≤ � �X > x−kn	+�

[
X >

x

n+1
] n∑
i=1

� �Yi > k	

Since X is both in � and �, one easily obtains from the preceding inequality,

lim
x→�

�
[
X+∑n

i=1X∧Yi > x
]

� �X > x	
≤ 1+C

n∑
i=1

� �Yi > k	

Setting k→�, since Yi <� a.s., yields the statement of the lemma. �

Lemma 5.2. Let X ∈�∩�, ƐX <�, and �X
e�
i �

n
i=1 be i.i.d. random variables equal in

distribution to X
e�. Then for any . > 0 there exist C, such that for all x ≥ 0 and n≥ 1,

�

[
X+

n∑
i=1
X∧X
e�

i > x

]
≤ C
1+ .�n� �X > x	

Proof. Define Sn �
∑n

i=1X

e�
i . Then

�

[
X+

n∑
i=1
X∧X
e�

i > x

]
≤ �

[
X >

x

n+1
� X+Sn > x

]
(5.5)

≤ �

[
X >

x

n+1

]
+�

[
X+Sn > x� Sn ≤ x

]


Next, by definition of the class of distributions �, we have s � sup
(
� �X > x	/� �X > 2x	

)
<� and, hence,

�

[
X >

x

n+1

]
≤ s�log2
n+1��� �X > x	(5.6)

On the other hand, Theorem A.1 and Lemma A.6(i) result in

� �X+Sn > x� Sn ≤ x	=
∫ x

0
� �X > x−y	d� �Sn ≤ y	(5.7)

≤ C
1+ .�n
∫ x

0
� �X > x−y	� �X > y	dy

≤ C
1+ .�n� �X > x	�
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where in the last inequality we used Definition (A.5) of � $. Inequality (5.5) in conjunction
with (5.6) and (5.7) yields the statement of the lemma. �

Lemma 5.3. Let X ∈� $ and

lim
x→�

� �X
e� > x	

x� �X > x	
<�

If �X
e�
i �

n
i=1 are i.i.d. random variables equal in distribution to X
e�, then, for any fixed n,

as x→�

�

[
X+

n∑
i=1
X∧X
e�

i > x

]
∼ � �X > x	

Proof. Define Sn �
∑n

i=1X

e�
i . Then,

�

[
X+

n∑
i=1
X∧X
e�

i > x

]
(5.8)

= �

[
X >

x

n+1 � X+
n∑
i=1
X∧X
e�

i > x

]

≤ �

[
X >

x

n+1
]
� �Sn > x−k	+� �X+Sn > x� Sn ≤ x−k	

� I1
x�+ I2
x��
where the inequality follows from the independence of X and Sn. Next we examine the
asymptotic behavior of I1
x� and I2
x�. First, the assumption of the lemma and Theorem A.1
yield

lim
x→�

I1
x�

� �X > x	
≤ lim

x→�
� �X > x/
n+1�	� �X
e� > x	

� �X > x	
lim
x→�

� �Sn > x−k	
� �X
e� > x	

(5.9)

≤ nlim
x→�

� �X
e� > x	

x� �X > x	
lim
x→�x�

[
X >

x

n+1

]
= 0

By definition of the class of distributions � $ (see the Appendix),

∫ x

0

� �X > x−y	� �X > y	
� �X > x	

dy −→ 2ƐX as x→��

and, therefore, the following double limit holds:

lim
k→�

lim
x→�

∫ x−k

k

� �X > x−y	� �X > y	
� �X > x	

dy = 0(5.10)

The quantity I2
x� can be upper bounded as

I2
x�≤ � �X > x−k	+
∫ x−k

k
� �X > x−y	d� �Sn ≤ y	(5.11)

By Lemma A.6(ii) for any . > 0 there exists k0 such that for all x > k > k0,∫ x−k

k
� �X > x−y	d� �Sn ≤ y	≤ 
1+.�n

ƐX

∫ x−k

k
� �X > x−y	� �X > y	dy(5.12)
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Finally, substituting (5.12) in (5.11), using (5.10) and recalling X ∈� $ ⊂� results in

lim
x→�

I2
x�

� �X > x	
≤ 1

Combining (5.8) with (5.9) and the preceding limit concludes the proof. �

Lemma 5.4. Let X ∈� $ and

lim
x→�

� �X
e� > x	

x� �X > x	
<�

If �X
e�
i �

n
i=1 are i.i.d. random variables equal in distribution to X
e�, then for any . > 0 there

exist C such that for all x ≥ 0 and n≥ 1,

�

[
X+

n∑
i=1
X∧X
e�

i > x

]
≤ C
1+ .�n� �X > x	

Proof. Define Sn �
∑n

i=1X

e�
i . Then

�

[
X+

n∑
i=1
X∧X
e�

i > x

]
≤ �

[
X >

x

n+1
� X+Sn > x

]
(5.13)

≤ �

[
X >

x

n+1

]
� �Sn > x	+� �X+Sn > x� Sn ≤ x	

Next, Theorem A.1 and Lemma A.6 yield

�

[
X >

x

n+1

]
� �Sn > x	≤ C
1+ .�n�

[
X >

x

n+1

]
� �X
e� > x	(5.14)

≤ C
1+ .�n
n+1� sup
z≥0
�z� �X > z	�x−1� �X
e� > x	

≤ Cn
1+ .�n� �X > x	�
where in the last inequality we used the assumption and the fact that ƐX <�. The second
term in the last inequality of (5.13) can be bounded in the same way as in (5.7) since
X ∈� $;

� �X+Sn > x� Sn ≤ x	≤ C
1+ .�n� �X > x	
Combining (5.13) with (5.14) and the preceding inequality concludes the proof. �

5.5. Proof of Theorem 3.2. (i) For any max
{
1
2 �&

}
< ( < 1, the union bound gives

�

[
N
u�∑
i=1

Xi−ƐXƐN
u� > x

]
≤ �

[
N
u�∑
i=1

Xi1�Xi ≤ (x�−ƐXƐN
u� > x

]
+�u� �X > (x	

We point out that, by assumption � �X > x	≤ Cxe−Q
x� and (3.2),

�u� �X > (x	≤ Cuxe−(Q
x� ≤ Cue−
1/2�Q
x��

from which one concludes that the first statement of the lemma holds if for all x and u,

�

[
N
u�∑
i=1

Xi1�Xi ≤ (x�−ƐXƐN
u� > x

]
≤ C

(
e−cx

2/u+ e−
1/2�Q
x�
)
(5.15)
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In the proof of this statement we restrict our attention to u ≤ @x2 for some @ > 0, since
for any @ > 0 and u > @x2 the bound holds trivially if C is chosen large enough; i.e.,
Ce−c/@ > 1. Next, let

1
(x

≤ s ≤ Q
x�

x
(5.16)

Then, Markov’s inequality and N
u� being Poisson yield

�

[
N
u�∑
i=1

Xi1�Xi ≤ (x�−�uƐX > x
]
≤ e−s
x+�uƐX�e�u
Ɛe

sX1�X≤(x�−1�(5.17)

We start with estimating the moment-generating function of X1�X ≤ (x�,

ƐesX1�X≤(x� =
∫ 1/s

0
esy d� �X ≤ y	+

∫ (x

1/s
esy d� �X ≤ y	+� �X > (x	(5.18)

The last term, by Markov’s inequality, can be upper bounded as

� �X > (x	≤ ƐX2

(2s2x2
s2 ≤ ƐX2s28(5.19)

recall that (3.2) implies ƐX2 <�. Inequality ex ≤ 1+x+x2 on �0�1	, gives rise to∫ 1/s

0
esy d� �X ≤ y	≤

∫ 1/s

0

1+ sy+ s2y2�d� �X ≤ y	(5.20)

≤ 1+ sƐX+ s2ƐX2

Next, concavity of Q
y� renders for 1/s ≤ y ≤ (x,

sy−Q
y�≤max�s(x−Q
(x�� 1−Q
1/s���
and, hence, integration by parts and Markov’s inequality yields∫ (x

1/s
esy d� �X ≤ y	≤ e� �X > 1/s	+Csx

∫ (x

1/s
esy−Q
y�dy(5.21)

≤ s2eƐX2+Csx2(es(x−Q
(x�+ e1−Q
1/s�)
≤ Cs2

(
1+x3(es(x−Q
(x�+ e1−Q
1/s�))

The expression in brackets in the last inequality of (5.21) is an increasing function in s
that achieves its maximum for s = Q
x�/x (see (5.16)). Then, by (3.3), (Q
x�−Q
(x� ≤
−
1−��
1−(�Q
x� and, by Lemma 3.1(i), Q
x/Q
x��≥Q
√x�; these two bounds, (3.2)
and (5.21), yield ∫ (x

1/s
esy d� �X ≤ y	≤ Cs2(5.22)

Hence, combining bounds (5.18), (5.19), (5.20), and (5.22), we derive

ƐesX1�X≤(x� ≤ 1+ sƐX+C∗s2�(5.23)

where C∗ is a constant. Substituting this estimate for ƐesX1�X≤(x� in (5.17) yields

�

[
N
u�∑
i=1

Xi1�Xi ≤ (x�−�uƐX > x
]
≤ e−sx+�uC

∗s2 
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Next, if u≤ x2/
2�C∗Q
x��, then by setting s =Q
x�/x we derive

�

[
N
u�∑
i=1

Xi1�Xi ≤ (x�−�uƐX > x
]
≤ e−
1/2�Q
x�(5.24)

On the other hand, if u≥ x2/
2�C∗Q
x��� s = x/
2�uC∗� 
≤Q
x�/x) yields

�

[
N
u�∑
i=1

Xi1�Xi ≤ (x�−�uƐX > x
]
≤ e−x

2/
4�C∗u�(5.25)

Since for any value of u either (5.24) or (5.25) holds, we conclude that (5.15) and, therefore,
the first statement of the theorem holds.
(ii) The proof of the second statement proceeds along similar lines. Choosing ( <


k+1�−1/
1−��, s = 
k+1�Q
x�/x, and using Lemma 3.1(i) we verify

s(x−Q
(x�≤ 
k+1�(Q
x�−Q
(x�(5.26)

≤ 

k+1�(1−�−1�(�Q
x� < 0

Next, Markov’s inequality yields

�

[ n∑
i=1
Xi∧(x−nƐX > x

]
≤ e−s
x+nƐX�

(
Ɛes
X∧(x�

)n
(5.27)

The moment-generating function of X∧(x can be bounded as

Ɛes
X∧(x� =
∫ 1/s

0
esy d� �X ≤ y	+

∫ (x

1/s
esy d� �X ≤ y	+ e(sx−Q
(x�

≤ 1+ sƐX+Cs2�
where the second inequality holds by (5.26) and the same arguments used in obtaining (5.23)
and (5.26). Substituting the preceding bound in (5.27) results in

�

[
n∑
i=1
Xi∧(x−nƐX > x

]
≤ e−s
x+nƐX�+n log
1+sƐX+Cs

2�

≤ e−s
x+nƐX�+n
sƐX+Cs
2�

≤ e−
k+1�Q
x�
1−
k+1�CQ
x�/x� ≤ e−kQ
x��

for all x large enough, which renders the second part of Theorem 3.2. �

5.6. Proof of Theorem 2.1. (Upper bound.) Note that B ∈ �� implies B ∈�∩� and
recall the definition of �B0 from (3.5). Based on (3.1) and �B0 ≥ B0 ≥ R0
t� for all t > 0, the
waiting time V0 can be upper bounded as

V0
1−�−)�≤ �B0+
N
V0�∑
i=1

Bi∧ �B0− 
�+)�V0

≤ �B0+ sup
t≥0

{
N
t�∑
i=1
Bi∧ �B0− 
�+)�t

}

and, thus, for any positive ) < 1−�,
� �V0
1−�−)� > x	≤ � � �B0 > 
1−)�x	+�

[
W

�+)
B∧ �B0 > )x

]
(5.28)
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Next we examine the asymptotic behavior of the second term in (5.28)

�
[
W

�+)
B∧ �B0 > )x

]≤ � � �B0 > )2x	�
[
W

�+)
B > )x

]+�
[
W

�+)
B∧)2x > )x

]
�

which by Lemmas 3.2, A.5, and Proposition 3.2 for ) sufficiently small results in

�
[
W

�+)
B∧ �B0 > )x

]= o
� �B > x	� as x→�8(5.29)

we use the fact that for any B ∈ �� there exists � > 0, such that � �B > x	 ≥ C/x� (see
(1.6) in Resnick and Samoradnitsky 1999). Substituting (5.29) in (5.28) yields

lim
x→�

� �V0
1−�� > x	
� �B0 > x	

≤ lim
x→�

� � �B0 > 
1−)�x	
� �B0 > 

1−��/
1−�−)��x	



Finally, recall Proposition 3.2 and then let ) ↓ 0 to complete the proof of the upper bound.
(Lower bound.) Recalling (3.11) for ) > 0 results in

� �
1−��V0 > x	≥ � �
1−��H←
x+)x� > x� B0 > 
1+2)�x� Z
V0�≤ )x	�

where Z is defined in the proof of Lemma 3.4. Next,

� �
1−��V0 > x	 ≥
(
� �
1−��H←
x+)x� > x	− sup

y≥
1+2)�x
� �Z
V 
y�� > )x	

)

·� �B > 
1+2)�x	

and the result follows from the Law of Large Numbers for H←, convergence of Z
t� to a.s.
finite Z and B ∈ ��. �

Appendix: Heavy-tailed distributions. Here, we introduce some basic definitions and
properties of heavy-tailed and subexponential distributions. First, we describe a family of
long-tailed distribution functions. This is the largest operational class of heavy-tailed distri-
butions. Let X be a random variable with distribution function (d.f.) F .
Definition A.1. A nonnegative random variable X (or its d.f. F ) is called long-tailed

X ∈� 
F ∈�� if

lim
x→�

1−F 
x−y�
1−F 
x� = 1� ∀y ∈ 	

The following class of heavy-tailed distributions was introduced by Chistyakov (1964).
Definition A.2. A nonnegative random variable X (or its d.f. F ) is called subexponen-

tial X ∈� 
F ∈� � if

lim
x→�

1−F 2∗
x�
1−F 
x� = 2�

where F 2∗ denotes the 2-fold convolution of F with itself, i.e., F 2∗
x� = ∫
�0��� F 
x− y� ·

F 
dy�.
It is well known that � ⊂ � (Athreya and Ney 1972). A survey on subexponential

distributions can be found in Goldie and Klüppelberg (1998). The class of intermediately
regularly varying distributions �� is a subclass of � .
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Definition A.3. A nonnegative random variable X (or its d.f. F ) is called intermedi-
ately regularly varying X ∈ �� (F ∈ ��) if

lim
@↑1

lim
x→�

1−F 
@x�
1−F 
x� = 1

Regularly varying distributions �� are the best-known examples from �� (�� ⊂ ��).
Definition A.4. A nonnegative random variable X (or its d.f. F ) is called regularly

varying with index �, X ∈�� (F ∈��� if

F 
x�= 1− l
x�

x�
� �≥ 0�

where l
x�7 	+ → 	+ is a function of slow variation, i.e., limx→� l
@x�/l
x�= 1, @ > 1.

Lemma A.5. Let F ∈ ��, @ ∈ 
0�1�; then

sup
x∈�0���

1−F 
@x�
1−F 
x� <�

Proof. Follows immediately from the definition. �

Definition A.5. A nonnegative random variable X (or its d.f. F ) belongs to the class
� $ if X has finite expectation and

lim
x→�

∫ x

0

1−F 
x−y�
1−F 
x� 
1−F 
y��dy = 2ƐX

Definition A.6. A nonnegative random variable X (or its d.f. F ) belongs to the class
� of dominated-variation distributions if

lim
x→�

1−F 
x�
1−F 
2x� <�

Theorem A.1 (Klüppelberg 1988). (a) If F ∈ � ∩� has finite expectation, then
F ∈ � $.

(b) If F ∈� $, then F ∈� and F 
e� ∈� .

Lemma A.6 (Klüppelberg 1989). Let �Xi�
�
i=0 be i.i.d. random variables. If X0 ∈ � $,

then

(i) for each . > 0 there exists a constant K
.� > 0 such that

d� �
∑n

i=1X

e�
i ≤ x	

dx
≤ K
.�
1+ .�n� �X0 > x	� x ≥ 0� n≥ 1

(ii) for any fixed n, as x→�,

d� �
∑n

i=1X

e�
i ≤ x	

dx
∼ n

� �X0 > x	

ƐX0
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